Security of Verifiably Encrypted Signatures and a Construction without Random Oracles
نویسندگان
چکیده
In a verifiably encrypted signature scheme, signers encrypt their signature under the public key of a trusted third party and prove that they did so correctly. The security properties, due to Boneh et al. (Eurocrypt 2003), are unforgeability and opacity. This paper proposes two novel fundamental requirements for verifiably encrypted signatures, called extractability and abuse-freeness, and analyzes its effects on the established security model. Extractability ensures that the trusted third party is always able to extract a valid signature from a valid verifiably encrypted signature and abuse-freeness guarantees that a malicious signer, who cooperates with the trusted party, is not able to forge a verifiably encrypted signature. We further show that both properties are not covered by the model of Boneh et al. The second main contribution of this paper is a verifiably encrypted signature scheme, provably secure without random oracles, that is more efficient and greatly improves the public key size of the only other construction in the standard model by Lu et al. (Eurocrypt 2006). Moreover, we present strengthened definitions for unforgeability and opacity in the spirit of strong unforgeability of digital signature schemes.
منابع مشابه
Aggregate and Verifiably Encrypted Signatures from Multilinear Maps without Random Oracles
Aggregate signatures provide bandwidth-saving aggregation of ordinary signatures. We present the first unrestricted instantiation without random oracles, based on the Boneh-Silverberg signature scheme. Moreover, our construction yields a multisignature scheme where a single message is signed by a number of signers. Our second result is an application to verifiably encrypted signatures. There, s...
متن کاملIdentity-Based Verifiably Encrypted Signatures without Random Oracles
Fair exchange protocol plays an important role in electronic commerce in the case of exchanging digital contracts. Verifiably encrypted signatures provide an optimistic solution to these scenarios with an off-line trusted third party. In this paper, we propose an identity-based verifiably encrypted signature scheme. The scheme is non-interactive to generate verifiably encrypted signatures and t...
متن کاملAn Efficient Verifiably Encrypted Signature Scheme without Random Oracles
In this paper, we propose an efficient verifiably encrypted signature scheme based on bilinear pairings. The proposed scheme is proven secure without random oracles. Our scheme has a tight security reduction to a strong but reasonable computational assumption. To the best of our knowledge, it is the third one of this kind in the literature to achieve this security level.
متن کاملSequential Aggregate Signatures and Multisignatures Without Random Oracles
We present the first aggregate signature, the first multisignature, and the first verifiably encrypted signature provably secure without random oracles. Our constructions derive from a novel application of a recent signature scheme due to Waters. Signatures in our aggregate signature scheme are sequentially constructed, but knowledge of the order in which messages were signed is not necessary f...
متن کاملVerifiably Encrypted Signatures with Short Keys Based on the Decisional Linear Problem and Obfuscation for Encrypted VES
Verifiably encrypted signatures (VES) are signatures encrypted by a public key of a trusted third party and we can verify their validity without decryption. This paper proposes a new VES scheme which is secure under the decisional linear (DLIN) assumption in the standard model. We also propose new obfuscators for encrypted signatures (ES) and encrypted VES (EVES) which are secure under the DLIN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009